Oscillation of a class of difference equations of second order
نویسندگان
چکیده
منابع مشابه
Oscillation of a Class of Nonlinear Difference Equations of Second Order with Oscillating Coefficients
In this paper, we study asymptotic behaviour of solutions of the following second-order difference equation: ∆ [ a(n)∆ [ x(n)+r(n)F (x(n−ρ)) ]] +p(n)G (x(n− τ))−q(n)G (x(n− σ)) = s(n), where n ∈ N0 := N ∪ {0}, {r(n)}n∈N0 and {s(n)}n∈N0 are sequences of real numbers, {p(n)}n∈N0 and {q(n)}n∈N0 are nonnegative sequences of real numbers, {a(n)}n∈N0 is positive, ρ, τ, σ ≥ 0 are integers and F,G are ...
متن کاملOscillation of second order nonlinear neutral delay difference equations
In this paper sufficient conditions are obtained for oscillation of all solutions of a class of nonlinear neutral delay difference equations of the form ∆(y(n) + p(n)y(n−m)) + q(n)G(y(n − k)) = 0 under various ranges of p(n). The nonlinear function G,G ∈ C(R,R) is either sublinear or superlinear. Mathematics Subject classification (2000): 39 A 10, 39 A 12
متن کاملA Class of Nonlinear Second Order Difference Equations from Macroeconomics
where the constant A,, = Co + I0 + Go represents the sum of the minimum consumption, the “autonomous” investment and the fixed government spending in period n, and Y, is the output--GNP or national income-in period n. The net investment amount in the same period is given as Z, = ac( Y,I Y,-,). The constant c E (0, 1) represents Keynes ’ “marginal propensity to consume” or the MPC, while the coe...
متن کاملthe impact of training on second language writing assessment: a case of raters’ biasedness
چکیده هدف اول این تحقیق بررسی تأثیر آموزش مصحح بر آموزش گیرندگان براساس پایایی نمره های آنها در پنج بخش شامل محتوا ، سازمان ، لغت ، زبان و مکانیک بود. هدف دوم این بود که بدانیم آیا تفاوتهای بین آموزشی گیرندگان زن و مرد در پایایی نمرات آنها وجود دارد. برای بررسی این موارد ، ما 90 دانشجو در سطح میانه (متوسط) که از طریق تست تعیین سطح شده بودند انتخاب شدند. بعد از آنها خواستیم که درباره دو موضوع ا...
15 صفحه اولOscillation criteria for second-order linear difference equations
A non-trivial solution of (1) is called oscillatory if for every N > 0 there exists an n > N such that X,X n + , 6 0. If one non-trivial solution of (1) is oscillatory then, by virtue of Sturm’s separation theorem for difference equations (see, e.g., [S]), all non-trivial solutions are oscillatory, so, in studying the question of whether a solution {x,> of (1) is oscillatory, it is no restricti...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Mathematical and Computer Modelling
سال: 2009
ISSN: 0895-7177
DOI: 10.1016/j.mcm.2008.11.001